83 research outputs found

    Entanglement entropy of two disjoint blocks in critical Ising models

    Get PDF
    We study the scaling of the Renyi and entanglement entropy of two disjoint blocks of critical Ising models, as function of their sizes and separations. We present analytic results based on conformal field theory that are quantitatively checked in numerical simulations of both the quantum spin chain and the classical two dimensional Ising model. Theoretical results match the ones obtained from numerical simulations only after taking properly into account the corrections induced by the finite length of the blocks to their leading scaling behavior.Comment: 4 pages, 5 figures. Revised version accepted for publication in PR

    Tensor Networks for Lattice Gauge Theories with continuous groups

    Get PDF
    We discuss how to formulate lattice gauge theories in the Tensor Network language. In this way we obtain both a consistent truncation scheme of the Kogut-Susskind lattice gauge theories and a Tensor Network variational ansatz for gauge invariant states that can be used in actual numerical computation. Our construction is also applied to the simplest realization of the quantum link models/gauge magnets and provides a clear way to understand their microscopic relation with Kogut-Susskind lattice gauge theories. We also introduce a new set of gauge invariant operators that modify continuously Rokshar-Kivelson wave functions and can be used to extend the phase diagram of known models. As an example we characterize the transition between the deconfined phase of the Z2Z_2 lattice gauge theory and the Rokshar-Kivelson point of the U(1) gauge magnet in 2D in terms of entanglement entropy. The topological entropy serves as an order parameter for the transition but not the Schmidt gap.Comment: 27 pages, 25 figures, 2nd version the same as the published versio

    Toolbox for Abelian lattice gauge theories with synthetic matter

    Get PDF
    Fundamental forces of Nature are described by field theories, also known as gauge theories, based on a local gauge invariance. The simplest of them is quantum electrodynamics (QED), which is an example of an Abelian gauge theory. Such theories describe the dynamics of massless photons and their coupling to matter. However, in two spatial dimension (2D) they are known to exhibit gapped phases at low temperature. In the realm of quantum spin systems, it remains a subject of considerable debate if their low energy physics can be described by emergent gauge degrees of freedom. Here we present a class of simple two-dimensional models that admit a low energy description in terms of an Abelian gauge theory. We find rich phase diagrams for these models comprising exotic deconfined phases and gapless phases - a rare example for 2D Abelian gauge theories. The counter-intuitive presence of gapless phases in 2D results from the emergence of additional symmetry in the models. Moreover, we propose schemes to realize our model with current experiments using ultracold bosonic atoms in optical lattices.Comment: Accepted versio

    Characterizing the quantum field theory vacuum using temporal Matrix Product states

    Full text link
    In this paper we construct the continuous Matrix Product State (MPS) representation of the vacuum of the field theory corresponding to the continuous limit of an Ising model. We do this by exploiting the observation made by Hastings and Mahajan in [Phys. Rev. A \textbf{91}, 032306 (2015)] that the Euclidean time evolution generates a continuous MPS along the time direction. We exploit this fact, together with the emerging Lorentz invariance at the critical point in order to identify the matrix product representation of the quantum field theory (QFT) vacuum with the continuous MPS in the time direction (tMPS). We explicitly construct the tMPS and check these statements by comparing the physical properties of the tMPS with those of the standard ground MPS. We furthermore identify the QFT that the tMPS encodes with the field theory emerging from taking the continuous limit of a weakly perturbed Ising model by a parallel field first analyzed by Zamolodchikov.Comment: The results presented in this paper are a significant expansion of arXiv:1608.0654

    Entanglement entropy for the long range Ising chain

    Full text link
    We consider the Ising model in a transverse field with long-range antiferromagnetic interactions that decay as a power law with their distance. We study both the phase diagram and the entanglement properties as a function of the exponent of the interaction. The phase diagram can be used as a guide for future experiments with trapped ions. We find two gapped phases, one dominated by the transverse field, exhibiting quasi long range order, and one dominated by the long range interaction, with long range N\'eel ordered ground states. We determine the location of the quantum critical points separating those two phases. We determine their critical exponents and central-charges. In the phase with quasi long range order the ground states exhibit exotic corrections to the area law for the entanglement entropy coexisting with gapped entanglement spectra.Comment: 5 pages, all comments welcom

    Direct numerical computation of disorder parameters

    Get PDF
    In the framework of various statistical models as well as of mechanisms for color confinement, disorder parameters can be developed which are generally expressed as ratios of partition functions and whose numerical determination is usually challenging. We develop an efficient method for their computation and apply it to the study of dual superconductivity in 4d compact U(1) gauge theory.Comment: 5 pages, 6 figures. Final revised version published in PR

    Locality of temperature in spin chains

    Get PDF
    In traditional thermodynamics, temperature is a local quantity: a subsystem of a large thermal system is in a thermal state at the same temperature as the original system. For strongly interacting systems, however, the locality of temperature breaks down. We study the possibility of associating an effective thermal state to subsystems of infinite chains of interacting spin particles of arbitrary finite dimension. We study the effect of correlations and criticality in the definition of this effective thermal state and discuss the possible implications for the classical simulation of thermal quantum systems.Comment: 18+9 pages, 12 figure

    On temporal entropy and the complexity of computing the expectation value of local operators after a quench

    Full text link
    We study the computational complexity of simulating the time-dependent expectation value of a local operator in a one-dimensional quantum system by using temporal matrix product states. We argue that such cost is intimately related to that of encoding temporal transition matrices and their partial traces. In particular, we show that we can upper-bound the rank of these reduced transition matrices by the one of the Heisenberg evolution of local operators, thus making connection between two apparently different quantities, the temporal entanglement and the local operator entanglement. As a result, whenever the local operator entanglement grows slower than linearly in time, we show that computing time-dependent expectation values of local operators using temporal matrix product states is likely advantageous with respect to computing the same quantities using standard matrix product states techniques.Comment: 6+3 pages, 8 figure

    Converting long-range entanglement into mixture: tensor-network approach to local equilibration

    Full text link
    In the out-of-equilibrium evolution induced by a quench, fast degrees of freedom generate long-range entanglement that is hard to encode with standard tensor networks. However, local observables only sense such long-range correlations through their contribution to the reduced local state as a mixture. We present a tensor network method that identifies such long-range entanglement and efficiently transforms it into mixture, much easier to represent. In this way, we obtain an effective description of the time-evolved state as a density matrix that captures the long-time behavior of local operators with finite computational resources.Comment: 5 pages, 4 figures, comments are welcome
    • …
    corecore